Recent results from the PK-4 experiments with dusty plasmas under microgravity conditions

A. Usachev, A. Zobnin, O. Petrov, and V.E. Fortov
Joint Institute for High Temperatures of RAS, 125412 Moscow, Russia

M. Thoma, H. Höfner, M. Kretschmer, M. Fink, and G. E. Morfill
Max-Planck-Institut für extraterrestrische Physik, D- 85740 Garching, Germany
Outline:

1. Introduction into the PK-4 Project

2. Recent results from the PK-4 experiments under microgravity:
 • Electrical manipulative (EM) electrode technology for manipulation of dusty plasmas
 • Micro-rods in DC discharge
 • The formation of a boundary-free dust cluster due to attractive forces caused by ion fluxes in a bulk plasma region
1. Introduction into the PK-4 Project

2002-2006: Predevelopment Phase
2006-2007: Preliminary Design Review (Phase A/B)
2008-2009: Phase Gate Review (Phase C/D)

Involved Partners:

Concept, science, engineering

Space Agencies:

Industry:
Scheme of the PK-4 experiment:

Main experimental parameters:

- Discharge gas: Ne, Ar, Ne+CF₄; Ne+O₂
- Discharge gas pressure: 2 – 266 Pa
- DC: 0.2 – 3 mA
- PS-DC mode: 1 kHz
- RF(i) power < 5 W
- Dust particles: 1 – 12 mcm
- Gas flow 0.2 – 12 sccm
PKE-4 is a soon coming space experiment:

- UV-induced dusty plasma
- Combined DC/RF(i)/EM dusty plasma
- DC dusty plasma
- RF(e) dusty plasma
- Combined DC/RF(i)/EM dusty plasma

Experiments:
- PK-2 (2000): RF(e) dusty plasma
- PK-3 Nefedov (2006): RF dusty plasma
- PK-3 Plus (2011): RF dusty plasma
- PK-4 (2013): Combined DC/RF(i)/EM dusty plasma
- PK-5 (2013):
PK-4 setup at the JIHT RAS:
PK-4 setup at the MPE:

Dust injectors:

EM electrode:

TM element:
PK-4 setup for Parabolic Flight Experiments (MPE):
Designed PK-4 setup for the ISS:
Why microgravity?

PK – 3; PK – 3 Plus

PK – 4

$g = 1$

$g = 0$

$g = 1$

$g = 0.04$
2003÷2008 = 5 PK-4 PF JIHT Campaigns with the MPE:

- 2003 (ESA)
- 2004 (DLR)
- 2006 (ESA)
- 2007 (DLR)
- 2008 (ESA)
22 seconds of microgravity ...
2.1. Electrical manipulative (EM) electrode technology for manipulation of dusty plasmas

1. By a pulse of the RF(i) discharge:

2. By an EM electrode:
 - Negative pulse V, $I = 0.6$ mA

3. Ideally, by a Mesh electrode (in PF):
Influence of Negatively biased EM-electrodes on DC discharge
Influence of Negatively biased EM-electrodes on dusty cloud in lab

DC discharge mode, constant negative bias

Cathode

Anode
Influence of Negatively biased EM-electrodes on dusty cloud under microgravity

DC discharge mode, constant negative bias

$I_{EM} = 0.1 \text{ mA (-200V)}$

$I_{EM} = 0.2 \text{ mA (-300V)}$
Influence of Negatively biased EM-electrodes on dusty cloud under microgravity

DC discharge mode, pulse negative bias
Influence of Negatively biased EM-electrodes on dusty cloud under microgravity

PS(1 kHz)-DC discharge mode, pulse negative bias
2.2. Micro-rods in DC discharge

Motivation:

1. Utilization of micro-rods instead of spherical microparticles permits one sufficiently extend possible states of dusty plasmas.

2. Investigation of physics of orientational ordering, orientational waves, orientational instabilities, etc.

3. Micro-rods are sensitive contact-less tool for diagnostics of permanent electric fields in low temperature.

Unique mono-disperse micro-rods from prof. K. Yoshino, Osaka, Japan

D=10 mkm, L=300 mkm

Micro-rod mass $>>$ Micro-sphere mass
Scheme of the experiment with micro-rods in DC-discharge under microgravity

Time diagram of the experiments
Micro-rods ordering in DC discharge

$\text{Ne, } p=25, 35, 50 \text{ Pa, } I=1 \text{ mA}$

Image size: $21\text{mm} \times 17\text{mm}$
Comparison of two “rod DC dusty plasmas”

Nefedov, Molotkov et al, 2000

- Tube diameter: 3 cm.
- Discharge current: 3.8 mA.
- Rods: L=300 mkm; D=10 mkm.
- Neon pressure: 50 Pa.
- Mean inter-rod distance: 1.3 mm.

Present work, 2008

- Tube diameter: 3 cm.
- Discharge current: 1 mA.
- Rods: L=300 mkm; D=15 mkm.
- Neon pressure: 120 Pa.
- Mean inter-rod distance: 0.4 mm.
Contact-less diagnostics of permanent electric fields in plasmas

Radial ambipolar field E_R – is diagnosed

$E_R = E_0 \cdot \tan \alpha$

Longitudinal discharge field

$E_0 = 2.1 \text{ V/cm}$

Radial electric field strength

Schottky’s theory

Falling spherical particles

Rod diagnostics

Probe diagnostics

Tube axis

11 mm x 9 mm

13th PNP Conference, Chernogolovka, September 13 – 18, 2009
Dust acoustic instability in rod dusty plasma at 25 Pa

\(P = 25 \text{ Pa} \)
\(N_R \sim 8000 \text{ cm}^{-3} \),
\(\nu \sim 0.4 \pm 0.1 \text{ Hz} \),
\(\lambda \sim 1.1 \pm 0.4 \text{ cm} \),
\(C_{DAW} \sim 0.5 \text{ cm/sec} \)

21 mm × 17 mm
Estimation of the rod charge using the “low-frequency” limit of linearized DAW equation:

\[
\frac{\omega}{k} = u_0 \frac{\omega_{pd}^2}{\omega_{pi}^2} \frac{v_{i}^{\text{eff}}}{v_{dn}} = C_{DAW}
\]

\[
Z_{MC} e E_0 = m_{MC} v_{dn} u_{MC} \quad \quad e E_0 = m_i u_0 v_{i}^{\text{eff}}
\]

\[
C_{DAW} = \frac{Z_{MC} n_{MC}}{n_i} u_{MC}
\]

where

\[u_0\] – ion drift velocity in \(E_0\); \(u_{MC}\) – micro-cylinder drift velocity in \(E_0\)

\[Z_{MC} = 85000 - 170000 \ e\]
2.3. Experimental investigation of boundary-free dusty plasma structures:

Plasma flux pressure > Electrostatic repulsion

Main conditions for formation of boundary-free dusty-plasma structures:

1. Plasma recombination rate on dust particles. $F_i > F_e$; $n_e > 10^9$ cm$^{-3}$.

2. Plasmas recombination rate on dust particles.

3. Condition for collective interaction

$F_i > F_e$; $n_e > 10^9$ cm$^{-3}$.

$r_D^2 / r_p^2 << T_e / T_i \sim 100$

$r_p \gg 2$ mcm.
1. Under gravity boundary-free structures are not possible.

2. Dust cloud should be situated in central region of discharge chamber.
Experimental configuration of the PK-4 Setup

1. Gas: Neon
2. Pressure: 60 Па
3. DC: 1 мА
4. RF(i) power: 1.5 W
Experimental parameters:

Preliminary DC mode:

\[n_i, n_e = 2 \cdot 10^8 \text{ cm}^{-3} \]
\[T_e = 7 \text{ eV} \]

Active RF mode:

\(\tau = 180 \text{ ms} \)

\[n_i, n_e = 4 \cdot 10^9 \text{ cm}^{-3} \]
\[T_e = 3.5 \text{ eV} \]
Formation of a Boundary-Free Dust Cluster (slow down in 12 times)

Image size: 21mm×17mm
Formation of a Boundary-Free Dust Cluster (slow down in 60 times)

Image size: 7mm×3mm
Scheme of the Boundary-Free Dust Cluster

\[\lambda_{Di} \approx 19 \, \mu m; \quad \lambda_{in} \approx 80 \, \mu m; \quad R_{cl} = 190 \, \mu m \]
Equilibrium condition for small particle at \(r = R_{cl} \):

\[
|F_i(R_{cl})| = |F_e(R_{cl})|
\]

\[
|F_{id}| = \left(2\sqrt{2}/3\right) m_i n_i u_i \nu_{T_i} r_{p2}^2 z_{p2}^2 \tau^2 \Lambda_{id}
\]

\[
\Lambda_{id} = 2z \int_0^\infty e^{-2x} \ln[1 + 2\tau^{-1}(\lambda_{D_i} / r_{p2})x]dx
\]

\[
z_{p2} = |Z_{p2}| e^2 / (4\pi\varepsilon_0 r_{p2} T_e)
\]

\[
F_{id}(R_{cl}) = 3.3 \cdot 10^{-14} \text{ N}
\]

Electrostatic potential around the big particle calculated in different approximations:

1 – Debye-Hückel potentials with the linearized ion Debye length \(r_{D_i} = 19 \mu\text{m} \);

2 – unscreened potential = \(eZ_{p1} r_{p1} / 8\pi\varepsilon_0 r^2 \) due to the OML ion current on the big particle in the collisionless regime;

3 – \(\varphi = 3.2 \cdot 10^{-6} (\text{V}\cdot\text{m})/r \) which supports ion current to the big particle in the mobility regime;

4 – self consistent numerical calculation
Conclusion:

Microgravity conditions is quite necessary for successful dusty plasma experiments!
Acknowledgments:

German Space Agency for financial support by the grant
50 WM 0504

European Space Agency for excellent organization of the Parabolic Flight Campaigns in Bordeaux

Russian Foundation for Basic Research for financial support by the grant # 07-02-01464-a
Special thanks to MPE engineers:

Karl Tarantik
Christian Deysenroth
Christian Rau
Sebastian Albrecht

for excellent engineering support of this work!
THANK YOU for YOUR ATTENTION!